Fishery Modernization ›› 2025, Vol. 52 ›› Issue (3): 1-. doi: 10.26958/j.cnki.1007-9580.2025.03.001

    Next Articles

Structural design and CFD hydrodynamic simulation analysis of a water quality detection robot

  

  1. (1 Institute of Intelligent Marine Science and Technology, Fujian University of Technology, Fuzhou 350118, Fujian, China;
    2 Intelligent Ocean and Engineering Research Institute, Fujian University of Technology, Fuzhou 350118, Fujian, China;
    3 Key Laboratory of Marine Intelligent Equipment in Fujian University, Fuzhou 350118, Fujian, China;
    4 Mechanical and Transportation Engineering, Hunan University, Changsha 410082, Hunan, China)

  • Online:2025-06-20 Published:2025-07-07

水质检测机器人结构设计及CFD水动力仿真分析

  1. (1福建理工大学智慧海洋科学技术学院,福建福州 350118;
    2 福建理工大学智慧海洋与工程研究院,福建福州 350118;
    3 海洋智能装备福建省高校重点实验室,福建福州 350118;
    4 湖南大学机械与运载工程学院,湖南长沙 410082)
  • 作者简介:黄红武(1959—),男,博士,教授,研究方向:海洋智能装备、智慧渔业。E-mail:huanghongwu@fjut.edu.cn

  • 基金资助:
    2023年福建省科技厅“揭榜挂帅”重大科技专项(2023HZ025003);福建省财政厅教育和科研专项(GY-Z23009);福建理工大学科研启动项目(GY-Z23056)

Abstract: This paper addresses the limitations of traditional water quality detection equipment in aquaculture, such as restricted detection range and insufficient depth, by designing a water quality detection robot and conducting structural dynamics and fluid dynamics analyses to verify the feasibility of the proposed design. First, the robot’s structural design and modeling were carried out, and the electronic cabin was subjected to static strength verification using the finite element method. Second, based on CFD, RANS and RNG k-ε turbulence models were used to analyze the robot's straight-line motion performance at speeds ranging from 0.2 to 1.0 m/s. Finally, overlapping grid technology was applied to explore the robot’s variable-speed motion characteristics. The results show that at a depth of 100 meters, the maximum equivalent stress in the electronic cabin is 50.70 MPa, with a maximum deformation of 0.0763 mm, which meets the pressure resistance requirements. Under straight-line motion, the hydrodynamic coefficients (、、、 and ) were −34.75, −37.54, −82.81, −71.16, and −93.47, respectively. In the variable-speed motion state, the corresponding inertia hydrodynamic coefficients (、 and ) were −7.32, −24.25, and −22.53, respectively. This study not only provides a novel equipment with underwater mobile detection system capable of full-range water quality monitoring,  but also offers data support for the structural optimization and motion control strategies, advancing its practical application in the field of water quality detection.


Key words: underwater robot, water quality detection, structural design, CFD, hydrodynamic coefficient

摘要: 针对传统水质检测设备在水产养殖工作中存在检测范围受限和检测深度不足等问题,设计了一款水质检测机器人,并对其进行结构动力学和流体动力学分析,以验证方案设计可行性。首先,完成机器人结构设计与建模,采用有限元方法对电子舱进行静力学强度校核;其次,基于CFD方法,采用RANS和RNG k-ε湍流模型,分析了0.2~1.0 m/s航速下的直航运动性能;最后,运用重叠网格技术,探究了变速运动特性。结果表示:在水下100 m时,电子舱最大等效应力为50.70 MPa,最大形变为0.076 3 mm,满足耐压要求。直航运动状态下,水动力系数(、、、和)分别为−34.75、−37.54、−82.81、−71.16和−93.47。变速运动状态下,惯性水动力系数(、和)分别为−7.32、−24.25和−22.53。该研究不仅为水质检测领域提供了一种具备水下移动能力、可实现全方位检测的新型装备,还为水质检测机器人结构优化与运动控制策略提供了数据支持,推动其在水质检测领域的实际应用。


关键词: 水下机器人, 水质检测, 结构设计, CFD, 水动力系数