渔业现代化

• 论文 • 上一篇    下一篇

基于计算机视觉的卵形鲳鲹眼部特征检测方法研究

胡祝华1,2,曹 路1,张逸然1,赵瑶池1,黄梦醒1,2 (1海南大学信息科学技术学院,海南 海口 570228;
2南海海洋资源利用国家重点实验室,海南 海口 570228)   

  1. (1海南大学信息科学技术学院,海南 海口 570228;
    2南海海洋资源利用国家重点实验室,海南 海口 570228)
  • 出版日期:2017-08-20 发布日期:2022-09-26
  • 通讯作者: 赵瑶池(1980—),女,副教授,研究方向:智慧农业、计算机视觉与图像处理。E-mail:yaochizi@163.com
  • 作者简介:胡祝华(1979—),男, 副教授,研究方向:智慧农业、海洋通信。E-mail:eagler_hu@163.com
  • 基金资助:
    海南省重大科技计划项目(ZDKJ2016015);海南省自然科学基金项目(20166232,20167238,617033);南海海洋资源利用国家重点实验室开放项目子课题(2016013B);海南大学研究生优秀学位论文培育计划项目

Study on eye feature detection method of Trachinotus ovatus based on computer vision

HU Zhuhua1,2, CAO Lu1, ZHANG Yiran1, ZHAO Yaochi1, HUANG Mengxing1,2 (1 College of Information Science and Technology, Hainan University, Haikou 570228, China;#br# 2 State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China)   

  1. (1 College of Information Science and Technology, Hainan University, Haikou 570228, China;
    2 State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China)
  • Online:2017-08-20 Published:2022-09-26

摘要: 鱼形态特征检测作为渔业信息化的一个重要课题,有着广泛地应用前景。现有的鱼眼特征检测主要依靠人工,操作复杂、效率低下、结果主观性强。因此提出一种基于图像处理及最小二乘椭圆拟合的鱼眼检测方法,首先在养殖场采集实验鱼例图像,再对鱼眼瞳孔和虹膜区域进行图像预处理,最后分别对鱼眼的瞳孔/虹膜轮廓进行椭圆拟合。实验结果显示,鱼眼瞳孔检测平均耗时325.96 ms,虹膜检测平均耗时364.57 ms,两者检测误差分别为7.247(11.82%)mm和12.179(14.05%)mm。研究表明,采用该方法不仅可以解决人工测量操作繁琐、主观性强等问题,而且能够避免测量过程耗时过长,为鱼眼的大批量非接触式测量提供了新途径。

关键词: 形态特征检测, 计算机视觉, 图像预处理, 直接最小二乘椭圆拟合

Abstract: As a vital issue of information based fisheries, morphological feature detection of fish is widely applied to many domains. The existing fish eye feature detection mainly depends on manual work, and the operation process is complex with low efficiency and subjective results. Therefore, a detection method of fish eye based on image processing and least square ellipse fitting is proposed. Firstly, fish images are collected from facilities in farm. Then image preprocessing is performed on fish eye pupil and iris. Finally, the edge of the fish eye pupil and iris is identified by ellipse fitting method. As seen from the results, pupil detection costs an average time of 325.96ms, iris detection costs an average time of 364.57ms, pupil detection error is 7.247 (11.82%) mm, and iris detection error is 12.179 (14.05%) mm. Studies have shown that the proposed method can not only solve the problem that manual work is complex and subjective, but also avoid the time-consuming measuring process and provide a new way for large quantities of fish eye non-contact measurement.

Key words: morphological feature detection, computer vision, image preprocessing, direct least square ellipse fitting