渔业现代化杂志

• 论文 • 上一篇    下一篇

池塘多营养级养殖水体的初级生产力及影响因子分析

(1 中国水产科学研究院渔业机械仪器研究所,上海,200092;
2  上海海洋大学水产与生命学院,上海 201306;
3 上海理工大学环境与建筑学院,上海 200093
4 南京农业大学无锡渔业学院,江苏 无锡,214128)   

  • 出版日期:2022-12-20 发布日期:2023-02-01
  • 通讯作者: 刘兴国(1965—),男,博士,研究员,研究方向:水生生物学与渔业生态工程。 E-mail:liuxingguo@fmiri.ac.cn
  • 作者简介:赵宇曦(1997—),男,硕士研究生,研究方向:水产养殖学与渔业生态学。 E-mail:GeassC@126.com
  • 基金资助:
    国家重点研发计划项目“淡水池塘生态养殖智能装备与渔农综合种养模式(2019YFD0900300)”

Primary productivity and influencing factors of water body in integrated multi-trophic aquaculture pond#br#

(1  Institute of Fishery Machinery and Instruments, Chinese Academy of Fishery Sciences, Shanghai 200092, China;#br# 2  College of Fisheries and Life Science,Shanghai Ocean University, Shanghai 201306, China;#br# 3  School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China#br# 4  Wuxi Fisheries College, Nanjing Agriculture University; Wuxi 214128, Jiangsu,China)#br#   

  • Online:2022-12-20 Published:2023-02-01

摘要: 为了解池塘多营养级养殖水体初级生产力的变化规律及关键影响因子,本研究构建了黄颡鱼(Pelteobagrus fulvidraco)多营养级养殖系统,于2020年9~11月和2021年3~8月,分别采用黑白瓶法、显微镜计数法、国标检测法,对养殖系统内养殖区、净水区两区的水体初级生产力、浮游植物生物量、水体理化指标进行了逐月调查。结果显示:养殖区、净水区初级生产力分别为1.90 ± 0.77 g/m2·d、3.05 ±1.43 g/m2·d,浮游植物生物量分别为0.45 ± 0.29 mg/L、0.81 ± 0.53 mg/L,差异显著(P<0.001, P=0.002),且季节波动明显,均在9~11月、3~4月降低,5~7月升高。养殖区、净水区浮游植物生物量主要受水温、光照、磷酸盐影响。养殖区水体初级生产力主要受水温、氨氮、溶氧影响;净水区初级生产力主要受水温、硝酸盐氮、浮游植物生物量影响。本研究旨在阐明黄颡鱼多营养级养殖池塘的基本生态特征,为黄颡鱼高效养殖提供理论参考。

关键词: 黄颡鱼, 多营养级养殖, 初级生产力, 浮游植物, 水体理化因子

Abstract: This dissertation has constructed an integrated multi-trophic aquaculture system of Pelteobagrus fulvidraco and investigated the change law of primary productivity,key influencing factors of it. From September to November 2020 and March to August 2021, the black and white bottle method, microscope counting method and national standard detection method were used monthly to measure the primary productivity, phytoplankton biomass, water physicochemical factors of the farming and purification area respectively, which were the functional areas of the pond. Results indicated that the primary productivities of the farming area (FA) and purification area (PA) were 1.90 ± 0.77 g/m2·d, 3.05 ± 1.43 g/m2·d respectively and the phytoplankton biomass was0.45 ± 0.29 mg/L, 0.81 ± 0.53 mg/L respectively, showing the significant difference (P<0.001, P=0.002). Primary productivity and phytoplankton biomass in FA and PA all decreased in September-November, March-April and increased in May-July, with obvious seasonal fluctuation. Moreover, phytoplankton biomass in FA and PA was mainly affected by water temperature, light and phosphate. The primary productivity of FA was mainly affected by water temperature, ammonia nitrogen and dissolved oxygen, while the primary productivity of PA was mainly affected by water temperature, nitrate nitrogen and phytoplankton biomass. This dissertation is aiming to clarify the basic ecological characteristics of Pelteobagrus fulvidraco integrated multi-trophic aquaculture pond, which provides theories for efficient aquaculture.

Key words: Pelteobagrus fulvidraco, integrated multi-trophic aquaculture, primary productivity, phytoplankton, water quality factor