渔业现代化杂志

• 论文 • 上一篇    下一篇

工厂化养殖鱼池清刷机器人的定位精度分析

  1. (1 上海海洋大学工程学院,上海 201306;
    2 中国水产科学研究院渔业机械仪器研究所,上海 200092)
  • 出版日期:2021-04-20 发布日期:2021-06-15
  • 通讯作者: 倪琦(1968—),男,研究员,研究方向:水产养殖工程。E-mail:niqi@fmiri.ac.cn
  • 作者简介:胡勇兵(1995—),男,硕士研究生,研究方向:机械工程。E-mail:huyb0407@163.com
  • 基金资助:
    国家海水鱼产业技术体系(CARS-47-G20)

Analysis on the positioning accuracy of fishpond clearing robot in industrial aquaculture

  1. (1 College of Engineering, Shanghai Ocean University, Shanghai 201306, China;
    2 Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China)
  • Online:2021-04-20 Published:2021-06-15

摘要: 为研究机器人在室内鱼池环境下的建图和定位效果,设计了基于机器人操作系统(ROS)和传感器的机器人建图定位系统。首先对鱼池机器人建立同步定位和地图构建(SLAM)系统模型,然后利用传感器提取环境特征,实现基于Gmapping算法的地图构建功能,采用自适应蒙特卡罗(AMCL)算法和选择方切角鱼池的基础试验组条件下,最后通过设置不同因素的对比试验,研究分析鱼池清刷机器人定位性能。结果显示:在机器人移动速度0.1 m/s,平均定位距离误差为9.02 cm,平均定位角度误差为4.6︒。研究表明,该鱼池清刷机器人能够在未知环境中构建精度较高的地图并且实现有效定位,具有良好的定位导航能力。

关键词: 鱼池清刷机器人, 定位, 建图, 蒙特卡罗算法

Abstract: In order to study the mapping and positioning effect of robot in indoor fishpond environment, a robot mapping and positioning system based on robot operating system (ROS) and sensor is designed. Firstly, the simultaneous localization and mapping (SLAM) system model of fishpond robot is established. Then, the sensor is used to extract the environmental features, and the mapping function based on Gmapping algorithm is realized. Under the condition of using the Adaptive Monte Carlo (AMCL) algorithm and selecting the basic experimental group of the fishpond with square corners, the positioning performance of the fishpond cleaning robot is studied and analyzed through the comparative experiments of different factors. The results show that the average positioning distance error is 9.02 cm and the average positioning angle error is 4.6 ︒ when the robot moves at a speed of 0.1 m/s. The research results show that the fishpond cleaning robot can construct high-precision map in unknown environment and achieve effective positioning, with good positioning and navigation ability.

Key words: fishpond cleaning robot, positioning, mapping, Monte Carlo algorithm;