渔业现代化杂志

• 论文 • 上一篇    下一篇

一种赖氨酸芽孢杆菌对凡纳滨对虾生长和水质影响

  1. (1 广东海洋大学水产学院,广东 湛江 524088;
    2 南方海洋科学与工程广东省实验室(湛江),广东 湛江 524025;
    3广东省水产经济动物病原生物学及流行病学重点实验室,广东 湛江 524088)
  • 出版日期:2022-12-20 发布日期:2023-02-01
  • 通讯作者: 孙成波(1970—),男,博士生导师,教授,研究方向:甲壳动物增养殖。E-mail:suncb@gdou.edu.cn
  • 作者简介:管立平(1998—),男,硕士研究生,研究方向:甲壳动物增养殖。E-mail:13682614536@163.com
  • 基金资助:
    广东省重点领域研发计划项目 (对接国家重大项目) “海水池塘生态工程化养殖技术与模式 ” (2020B0202010009);冲一流省财政专项资金“南海经济虾类育种和养殖实验室”(231419025)。

Effects of a Lysinibacillus strain on the growth and water quality of Litopenaeus vannamei#br#

  1. (1 College of Fisheries,Guangdong Ocean University, Zhanjiang 524088,Guangdong, China;
    2 Guangdong Laboratory of Southern Ocean Science and Engineering ( Zhanjiang ), Zhanjiang 524025 ,Guangdong, China;
    3 Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology of Aquatic Economic Animals,Zhanjiang 524088, Guangdong, China;)
  • Online:2022-12-20 Published:2023-02-01

摘要: 为探讨一种赖氨酸芽孢杆菌对凡纳滨对虾生长、存活和养殖水质的影响。设1个试验组和1个对照组,每组3个平行,125尾对虾/桶,初始体质量 (5.18 ± 0.13) g、体长 (9.40 ± 0.18) cm、水温(26 ± 2) ℃、盐度30、试验时间10 d。试验组定期添加浓度为0.463×109 CFU/mL的赖氨酸芽孢杆菌菌液,试验组和对照组NH4+-N质量浓度变化范围分别为(0.05 ± 0.01) ~ (5.51 ± 0.09) mg/L、(0.05 ± 0.01) ~ (6.07 ± 0.22) mg/L。NO2--N质量浓度变化范围分别为 (0.07 ± 0.01) ~ (0.13 ± 0.01) mg/L、(0.07 ± 0.01) ~ (0.19 ± 0.01) mg/L。NO3--N质量浓度变化范围分别为 (0.07 ± 0.01) ~ (0.81 ± 0.07) mg/L、(0.07 ± 0.01) ~ (1.26 ± 0.07) mg/L。pH的变化范围分别为 (7.10 ± 0.01) ~ (7.74 ± 0.01)、(7.03 ± 0.01) ~ (7.74 ± 0.01)。结果显示:赖氨酸芽孢杆菌对养殖水体中的NH4+-N、NO2--N和NO3--N的控制及pH调控具有极显著效果 (P<0.01) ;试验组和对照组终末体质量分别为 (7.01 ± 0.38) g、(6.78 ± 0.23) g终末体长分别为 (9.67 ± 0.08) cm、(9.63 ± 0.04) cm,试验组相比于对照组有明显的提高但两者不存在显著性差异 (P>0.05);试验组存活率 (77.07% ± 1.22%) 显著高于对照组 (71.73% ± 2.81%) 具有显著效果 (P<0.05) 。研究表明,赖氨酸芽孢杆菌有助于促进凡纳滨对虾生长、存活和水质调控。

关键词: 赖氨酸芽孢杆菌, 凡纳滨对虾, 水质净化, 生长指标

Abstract: Taking Litopenaeus vannamei as the research object, the effects of a Lysinibacillus strain on the growth, survival, and aquaculture water quality of L.vannamei were investigated. One experimental group and one control group were set up, with three parallels in each group, 125 shrimps/barrels, initial body mass ( 5.18 ± 0.13 ) g, body length ( 9.40 ± 0.18 ) cm, water temperature ( 26 ± 2 ) °C, salinity 30, and experimental time 10 d. The experimental group was continuously added with Lysinibacillus at a concentration of 0.463×109 CFU/mL, The concentrations of NH4+-N in test group and control group were ( 0.05 ± 0.01 ) - ( 5.51 ± 0.09 ) mg/L and ( 0.05 ± 0.01 ) - ( 6.07 ± 0.22 ) mg/L. The variation ranges of NO2--N concentration were ( 0.07 ± 0.01 ) -( 0.13 ± 0.01 ) mg/L and ( 0.07 ± 0.01 ) - ( 0.19 ± 0.01 ) mg/L. The variation ranges of NO3--N concentration were ( 0.07 ± 0.01 ) ~ ( 0.81 ± 0.07 ) mg/L and ( 0.07 ± 0.01 ) - ( 1.26 ± 0.07 ) mg/L. The range of pH was ( 7.10 ± 0.01 ) ~ ( 7.74 ± 0.01 ) and ( 7.03 ± 0.01 ) -( 7.74 ± 0.01 ) respectively. Lysinibacillus had significant effects on the control of NH4+-N, NO2--N, and NO3--N in aquaculture water and pH regulation ( P < 0.01 ). The final body mass was ( 7.01 ± 0.38 ) g, ( 6.78 ± 0.23 ) g, and the final body length was ( 9.67 ± 0.08 ) cm, ( 9.63 ± 0.04 ) cm. The experimental group was significantly improved compared with the control group, but there was no significant difference between the two groups ( P > 0.05 ). The survival rate of the experimental group ( 77.07 % ± 1.22 % ) was significantly higher than that of the control group ( 71.73 % ± 2.81 % ) ( P < 0.05 ). The results showed that Lysinibacillus was helpful to promote the growth, survival, and water quality control of L.vannamei.

Key words: Lysinibacillus, Litopenaeus vannamei, water purification, growth index